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Ⅰ. Introduction

Computer vision is a technology that analyzes pixel

information of images or videos to discern meaning

or patterns, processing information in a manner

similar to the human visual system[1]. With the advent

of deep learning, especially the Convolution Neural

Network (CNN), there has been a significant

improvement in the ability to autonomously learn

features of images[2]. As a result, deep learning has

begun to be utilized in various fields, and in the realm

of computer vision, topics such as object

classification, object detection, segmentation, and

natural language processing are being prominently

researched[3,4].

Object detection is a technology that

simultaneously identifies the location and type of a

specific object within an image or video, with a wide

range of applications[5]. In security and monitoring

systems, it is used to detect and track the movements

of specific individuals or objects. In the medical field,

it is applied to detect lesions or abnormalities within

medical images. Especially in autonomous vehicles,

it is essential for recognizing the surrounding

environment and detecting obstacles or pedestrians.

Due to the diverse applications requiring real-time and

accurate information, high precision and swift

processing speeds are demanded in object detection.

Owing to its significance, the advancement of object

detection technology is considered a critical research

topic for many researchers, leading to continuous

studies and developments[6].

One application area that further emphasizes the

importance of object detection technology is UGV
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(Unmanned Ground Vehicle)[7]. UGVs are unmanned

vehicles that operate on the ground and can utilize

object detection technology across various domains.

Especially since UGVs operate in dynamic

environments, the use of real-time object detection is

essential. In military settings, they identify obstacles,

enemy forces, or specific terrain features. In urban

contexts, UGVs detect pedestrians, vehicles, traffic

lights, and various signs in real-time. Conversely,

object detection in UAVs (Unmanned Aerial

Vehicles) holds even greater significance than in

UGVs[8]. Due to the enhanced mobility of UAVs, they

require monitoring over vast areas from higher

altitudes. Given these characteristics, they often detect

objects in complex environments. For instance, in the

military, they monitor enemy movements across

expansive ranges. During disasters, they assess the

overall situation of affected areas or search for

missing persons. Thus, for the success of missions

across diverse fields, the performance of object

detection becomes a crucial factor. However, unlike

UGVs, which are grounded and not heavily

constrained by onboard weight limits, UAVs execute

object detection with smaller onboards due to payload

restrictions. Therefore, there's a heightened emphasis

on achieving rapid inference speeds and high accuracy

for real-time object detection on onboards with more

limited computational capacities.

With the emphasized importance of real-time object

detection in UAVs, various real-time object detection

models and techniques (SSD, MobileNet,

EfficientDet, YOLO) tailored for UAV environments

have been researched. SSD (Single Shot MultiBox

Detector) is structured to detect objects of various

sizes in real-time and is widely used for real-time

object detection in UAVs[9]. MobileNet features a

lightweight CNN structure and, when combined with

SSD, is utilized for real-time object detection[10].

EfficientDet is another model that garners attention,

offering both fast speed and high accuracy through

an efficient network structure[11]. Among these,

YOLO (You Only Look Once) stands out, with

various versions from YOLOv2 to YOLOv8 that have

been improved for optimal real-time processing[12-15].

Continuous research is being conducted to achieve

high object recognition rates and fast inference speeds,

even in the rapidly changing environments of UAVs.

However, many of these studies fail to consider the

unique characteristic of UAVs, which is their ability

to freely adjust their altitude. As the UAV ascends

to higher altitudes, objects on the ground become

smaller in terms of resolution relative to the altitude.

This can lead to a decline in object detection accuracy,

as smaller objects result in fewer pixels, making their

features less distinct. As the number of pixels for an

object changes with altitude, it becomes challenging

for the model to classify or detect that object correctly.

To overcome these challenges, research for object

detection in UAVs is moving towards developing

techniques specifically designed for detecting small

objects at high altitudes (FPN, Anchors Matching

Strategies, Data Augmentation, Super Resolution,

Tiling). FPN (Feature Pyramid Networks) aims to

detect small objects in images using filters of various

scales[16]. Anchors Matching Strategies adjust the size

and ratio of anchors to make them more suitable for

detecting small objects[17]. Data Augmentation

involves cropping or resizing images to train the

network to recognize small objects better[18]. Super

Resolution enhances the resolution of low-resolution

objects, making small objects clearer and easier to

recognize[19]. Moreover, research is also being

conducted to modify the network structure or the loss

function to enhance the detection capability for small

objects[20]. There's also research using the tiling

algorithm, which splits the image into multiple small

tiles and detects objects within each tile, aiming to

detect smaller objects[21-23].

Research on the development of tiling algorithms

for small object detection has introduced various

approaches. The study [21] presents a new framework

called Slicing Aided Hyper Inference (SAHI), which

divides high-resolution images into overlapping

patches for detecting small objects. This tiling

approach has been extensively expanded in studies

such as [25, 26, 27, 28, 30]. Additionally, research

[22] has conducted small object detection focusing on

pedestrians and vehicles in Micro Aerial Vehicles

(MAVs) using a PeleeNet-based SSD network. To

enhance the efficiency of tiling, adaptive tiling
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methods like [24, 28] have been investigated.

Adaptive tiling, which splits the image into

non-overlapping tiles and applies dynamic

overlapping rates, increases detection accuracy while

reducing computational requirements. Such tiling and

adaptive tiling algorithms contribute significantly to

real-time object detection on mobile platforms like

UAVs.

However, most tiling algorithms have a fixed

number of tiles, leading to significant variability in

detection performance as the altitude of the UAV

changes. Specifically, while these algorithms are

advantageous for detecting small objects when the

UAV is flying at high altitudes, they might degrade

the detection performance at lower altitudes.

Therefore, research is being conducted to address

these issues.

In contrast with traditional approach where a fixed

number of tiles is utilized to detect small object, this

paper proposed a different method. In this paper, a

dynamic number of tiles is proposed based on altitude

and the size of detected bounding box. Therefore, it

is possible to detect an object consistently regardless

the altitude of the UAV.

The structure of the paper is as follows: In Chapter

2, a detailed description of the system model is

provided and algorithm proposed in this paper.

Chapter 3 offers a comprehensive introduction to the

equipment, environment, methods, and results used in

the experiments. Finally, Chapter 4 presents the

conclusions of this study and discusses future research

directions.

Ⅱ. Real-time Automatic Tiling

In this section, a method for detecting small objects

through altitude-based automatic tiling is presented.

To be specified, the system model and proposed

algorithm are described

2.1 Proposed System Model
The system model of this paper is presented in Fig.

1. As shown in Fig. 1, UAV is equipped with a Flight

Controller (FC), an AI board, and a camera. Real-time

tiling is performed using the images received from

the camera. Afterward, a split image frame is used

as network input to conduct inference on the AI board.

To determine the proper number of tiles at each

altitude, the altitude value is obtained from the FC

using Robot Operation System (ROS), and the number

of tiles is adjusted in real-time to detect small objects

at different altitudes precisely.

2.2 Proposed Algorithm
As illustrated in Fig. 2, the tiling algorithm for

image processing to find small objects has been

studied. The tiling algorithm refers to the process of

splitting a large dataset into multiple tiles. In this

manner, each tile can be processed independently, in

parallel, and distributed. Finding the proper tile size

in the tiling algorithm is a crucial task. This is because

memory issues arise when the number of tiles

increases, leading to problems in inference speed.

Therefore, it is essential to obtain the proper number

of tiles in UAV small object detection task, where

the altitude of the UAV is continuously changing. The

algorithm, in theory, can continue tiling indefinitely

as long as the altitude of the drone and the

performance of the onboard AI board are supported.

Fig. 1. System model

Fig. 2. Tiling Algorithm
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However, in this paper, tiling was performed up to

3x3 due to the limited computational capacity of the

onboard AI board.

In this paper, the existing tiling algorithm is

integrated with YOLOv5. As mentioned in the

introduction, there are various versions of YOLO.

Although theoretical increases in accuracy have been

observed with each new version, the real-time object

detection in our considered onboard UAV

environment does not translate these increases into

practical differences. Therefore, based on our previous

research experience, YOLOv5 was selected to ensure

the reliability and consistency of our study. Inference

is configured to operate an automatic tiling system

according to Algorithm 1 at different altitudes that is

integrated with YOLOv5 for object detection and is

processed on an AI board mounted on a UAV. The

real-time images received from the camera are split

into rows and columns. The number of tiles is

determined based on the altitude of the UAV and

bounding box size from the object detection. The

altitude value of UAV is obtained from the Pixhawk,

an FC mounted on the UAV, using ROS and Mavlink

ROS (MAVROS). If the bounding box size is small

at a specific altitude, the number of tiles is increased

to enable small objects to be detected and thus

increase the precision of the small object detection.

2.2.1 Image Splitting

The size of original image frame which contains

height and width information is detected, and then the

information is stored in the 'height' and 'width'

variables. The size of the image frame is classified

as follows; (i) In a 2D image, the height and width

of 2D image are utilized directly; (ii) in a 3D image,

the height and width of the image are stored in a

variable and then utilized. To calculate the coordinates

of the split image frame, the height, and width of each

tile at time t can be defined as follows

(1),

(2),

where hi(t) denoted the height of i-th tile at time t,
R denotes the rows of original image frame at time

t, and h(t) denotes the height of original image frame

at time t. wi(t) denotes the width of i-th tile at time

t, C denotes the columns of original image frame at

time t, and w(t) denotes the width of original image

frame at time t. In these calculations, results are

rounded, as rounding is generally utilized for

providing the most accurate estimates, ensuring the

dimensions of each tile closely match the actual pixel

dimensions. Subsequently, an empty list named 'split

images info' is then created. In this work, a

corner-to-center method is utilized to determine the

tile coordinates in the form of (y1, y2, x1, x2). The

corner-to-center method is used to calculate the center

point, height, and width of a bounding box using the

coordinates of its two diagonal corners. At this step,

an overlap part is added to prevent objects from being

cut off when tiles division is performed. Iteratively,

a dictionary named 'split image info' is created, then

the image frame and coordinate tuple are stored using

the keys 'image' and 'coords'. At each iteration,

information on the split image frame is stored in the

dictionary and appended to the 'split images info' list.

Algorithm. 1. Automatic Tiling Algorithm



The Journal of Korean Institute of Communications and Information Sciences '24-03 Vol.49 No.03

428

The split image frame is converted to 640x640 for

effective processing in the YOLOv5 network.

Subsequently, the converted image frame is

transformed into a PyTorch tensor. After inference,

the results of the split images are appended to an

empty list named 'result', merged, and bounding

boxes are displayed on the original image.

2.2.2 Merging Results

To merge the detection results from the split image

frames, a coordinate transformation aligned with the

original image is essential. For this, the ratio between

the split image and the resized image must be

calculated, which can be done using the formulas split

height/resized height and split width/resized width.

Subsequently, the coordinates of the detected

bounding boxes are multiplied by these calculated

ratios to transform them to align with the original

image. Therefore, each split image is resized for

inference. Instead of remerging the split images, only

the results of the inferred bounding boxes are merged

into the original image, utilizing the calculated ratios

between the original and resized images.

2.3 Model Lightweights
A lightweighting process in deep learning refers to

reducing the size of the deep learning model and

enhancing computational efficiency, which

exponentially increases computational performance

which is beneficial for a computer that has limited

storage and memory, i.e., embedded boards.

Therefore, the lightweighting process in deep learning

is essential to be applied in the proposed tiling

algorithm that will be processed on an AI board

mounted on a UAV. In this paper, TensorRT, a deep

learning inference library provided by Nvidia, was

used. TensorRT operates in environments using

NVIDIA GPUs and generates optimized engines that

can quickly execute models trained in various deep

learning frameworks. Training model optimization is

achieved through Quantization and various

optimization techniques. TensorRT offers various

computational precisions, such as FP32 (Floating

Point 32), FP16 (Floating Point 16, Half-Precision),

and INT8 (Integer Quantization). Table 1 presents the

measured mAP (mean Average Precision) for

different operational precisions on the Visdrone

Dataset, along with the real-time FPS (Frames Per

Second) on the Nvidia Jetson Xavier NX. As observed

in Table 1, there is not a significant difference in mAP

between FP32 and FP16. However, a more than

twofold difference in real-time FPS was noted. For

INT8 precision, while the real-time FPS reached 66.6,

there was a considerable decrease in mAP compared

to FP precisions. Consequently, in this paper, the

YOLOv5s.pt model has been optimized using

TensorRT FP16 precision to maintain high

performance in an embedded board environment.

Ⅲ. Experiment

The experiment was conducted in two real

environments where a UAV flew and performed

object detection tasks. In this work, detection class

is focused only on a “pedestrian” class. This is due

to large objects, i.e., “car” which can relatively easy

to be detected at high altitude, while pedestrian which

classified as small object is hard to detect. Therefore,

this study focuses on detecting small objects at various

altitudes employing the proposed autonomous tiling

algorithm, which is the objective of this work. In

addition, the proposed tiling method can be beneficial

for pedestrian monitoring with security and rescue

scenarios, specifically in urban areas. For instance, the

proposed tiling method which is applied on the UAV

can be applicable in analyzing pedestrian flow at

large-scale events, tourist spots, public facilities, and

search and rescue missions during a disaster scenario.

3.1 Experimental Setup
In this paper, a Holybro X500 UAV frame was

used as shown in Fig. 3. In order to conduct real-time

object detection, Nvidia Jetson Xavier NX and Orin

NX AI boards that were attached to the UAV were

Floating
point 32

Floating
point 16

Int8

mAP 0.329 0.329 0.098

Real-time FPS 16.7 38 66.6

Table 1. TensorRT Performance Comparison
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utilized. A real-time image frame was captured using

the ZR10 monocular camera. The object detection was

trained using a Visdrone dataset. Moreover, the 's'

model provided by YOLOv5 was utilized to perform

a real-time object detection. The TensorRT, one of

the lightweight optimization processors, was

employed to perform inference on the AI board.

As mentioned previously, the experiments in this

paper were conducted in two distinct environments.

The first environment, which was abundant in

'pedestrian' class small objects, served as the setting

for evaluating and comparing the performance of each

model at various altitudes. Experiments in this setting

were conducted on a clear day over a grass field of

6084 square meters. As the altitude increased, an area

up to 10000 square meters was covered. The number

of pedestrians was observed, starting from one object

at lower altitudes and increasing up to thirteen objects

as the altitude rose. The second environment

encompassed the vicinity of a building's parking lot,

where the detection of small objects at varying

altitudes was assessed. This setting, encompassing a

mix of vehicular and pedestrian traffic as well as

diverse background elements such as buildings, was

deemed suitable for testing object detection

performance in complex environments, and thus, was

chosen for the experimental trials.

3.2 Datasets
As mentioned in Section 3.1, the dataset utilized

for object detection is the Visdrone dataset. The

Visdrone dataset consists of data collected from drone

views in various environments, primarily designed for

object detection and object tracking from UAVs. This

dataset possesses a broad range of characteristics

suitable for object detection in multiple environments

and conditions. However, the Visdrone dataset has a

limitation where the size of the objects decreases as

the altitude increases, which makes the object

detection challenging. In this work, the Visdrone

dataset, comprising 6471 training images, was utilized

to train the models. The performance of the proposed

tiling method at various altitudes was then measured,

and the detection success rate and its limitations were

analyzed.

3.3 Evaluation Metrics
In this study, three primary performance metrics

are employed to evaluate the proposed method:

precision, recall, and the F1 score. These indicators

are essential for analyzing and assessing the

performance of object detection models.

Precision is an indicator that reflects how

accurately the models detects objects, denoted as the

ratio of true positive (TP) detections to the sum of TP

and false positive (FP) detections, where TP represents

correctly identified objects, and FP represents

incorrectly identified ones. Recall, on the other hand,

indicates how well the model detects objects of a

particular class, calculated as the ratio of TPs to the

sum of TPs and false negatives (FN), with FNs being

objects that were not detected but should have been.

This metric represents the proportion of TPs against

the ground truth.

However, there is a trade-off relationship between

these two metrics. Increasing precision may result in

a lower recall and vice versa. Due to this reason, the

F1 score is utilized to conduct a balanced performance

evaluation, representing the harmonic mean of

precision and recall. The F1 score proves useful in

assessing the performance of models when both

metrics are considered simultaneously, providing a

balance between them and offering an overall measure

of model performance.

Thus, precision, recall, and the F1 score each

evaluate the performance of the model from different

Fig. 3. Hardware
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perspectives, ensuring an accurate reflection of object

detection capabilities in complex and varied

real-world scenarios. The fundamental rationale for

employing these metrics in this research is to

comprehensively assess whether the UAV-based

object detection system fulfills the requirements in

actual operational environments.

3.4 Experiment Result
Fig. 4 depicts the experimental site encompassing

multiple pedestrian classes. At this location, an UAV

was flown up to an altitude of 130 meters, wherein

the performance of small object detection across

various models was compared using precision, recall,

and F1 score as evaluation metrics. As mentioned in

the Evaluation Metrics section, TP, FN, and FP were

used to define cases of detection failures. Each

pedestrian was counted individually, with successful

detection (TP) being considered when the algorithm

accurately identified a pedestrian. Conversely, if a

pedestrian present in the image was not detected, it

was counted as a FN. Furthermore, when an object

other than a pedestrian was incorrectly identified as

a pedestrian, it was counted as a FP. Table 2 presents

the precision and recall values for each model at

varying altitudes. It was observed that the

conventional Yolov5 model exhibited a decline in

object detection capabilities as the altitude increased.

Tiling algorithms employing a fixed number of tiles,

such as 2x2 or 3x3, demonstrated improved

performance at specific altitudes only. However, the

proposed method consistently showed superior

performance in small object detection across a range

of altitudes, mainly because the number of tiles was

appropriately chosen for each altitude. For instance,

in the altitude range of 30-50 meters, the performance

of the proposed algorithm was observed to be better

than the 2x2 tiling, as at lower altitudes, it is

advantageous not to use tiling. Consequently, tiling

is not employed at lower altitudes in the proposed

method, while it is applied at altitudes where tiling

becomes necessary. Table 3 lists the F1 scores for

each threshold across all altitudes, confirming that the

proposed method outperforms other models in terms

of performance, effectively adapting to varying

altitudes by selectively employing tiling.

Fig. 5 shows the results of object detection

performed at each altitude. The first row of Fig. 4

presents the ground truth. The second, third, and

fourth row represent the object detection results of

employing YOLOv5, 2x2 tiling, and the proposed

method, respectively. As shown in the figure, both

the object detection using YOLOv5 and the tiling

algorithm with a fixed number of tiles failed to detect

objects at all altitudes. However, our proposed

method, which is based on altitude and bounding box

size, successfully detected small objects at every

altitude.

The proposed method has been experimentally

validated to recognize small objects at any altitude,

based on UAV’s altitude and bounding box size. At

Alt(m)
Yolov5 2x2 3x3 Proposed

Precision Recall Precision Recall Precision Recall Precision Recall

30-50 0.763 0.213 0.611 0.210 0.342 0.168 0.763 0.213

50-70 0.300 0.107 0.708 0.161 0.570 0.171 0.708 0.161

70-90 0.261 0.103 0.733 0.233 0.670 0.257 0.733 0.233

90-110 0.470 0.078 0.633 0.183 0.606 0.274 0.606 0.274

110-130 0.613 0.075 0.622 0.220 0.636 0.295 0.636 0.295

Table 2. Precision and Recall by Altitude

Fig. 4. Experiment environment
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lower altitudes, object detection is performed without

tiling, and the number of tiles is adjusted based on

the altitude value and the size of the bounding box Real-time FPS Xavier NX Orin NX

No tiling 38 70

2x2 tiling 9.5 17.5

3x3 tiling 4.2 7.8

Table 4. Real-time FPS for Object Detection on AI
Board

to determine the proper number of tiles for each

altitude. Table 4 presents the real-time FPS in two

different AI board environments. It is observed from

Table 4 that the increase in 3x3 tiles results in a

performance drop below 10FPS on the AI board.

Therefore, its use becomes an issue for real-time

object detection on the AI board.

Fig. 5. Comparison of object detection results: The first row presents the ground truth with yellow boxes, the second row
presents results using YOLOv5, the third row presents results with 2x2 tiling, and the fourth row presents results using the
proposed method.

F1 score
threshold

Yolov5 2x2 3x3 Proposed

0.1 0.442 0.573 0.524 0.601

0.2 0.359 0.542 0.581 0.598

0.3 0.249 0.447 0.541 0.523

0.4 0.198 0.368 0.425 0.442

0.5 0.143 0.292 0.265 0.336

0.6 0.063 0.202 0.129 0.203

0.7 0.026 0.076 0.024 0.056

0.8 0.005 0.000 0.000 0.005

0.9 0.000 0.000 0.000 0.000

Average 0.165 0.278 0.276 0.307

Table 3. F1 score by All Altitude
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Ⅳ. Conclusions

In this paper, an algorithm that receives UAV

altitude values in real-time is proposed and the size

of bounding boxes is also considered to detect small

objects at any altitude. The proposed method solved

the issue of existed tiling algorithms that detect small

objects using a fixed number of tiles. To be specified,

in the proposed method, the number of tiles was

dynamically adjusted by considering the altitude value

and the size of the bounding box simultaneously.

Therefore, by employing the proposed method, the

small objects were able to be detected more stable

at any altitudes. Additionally, this study's

performance has been verified through experiments in

real-world environments, with a focus on measuring

real-time frame rates, demonstrating its practicality in

the changing environments of drones. This aspect

differentiates it from previous research, showcasing

the applicability of tiling algorithms in actual

environments.

However, all experiments were conducted only in

clear weather conditions and at two specific locations.

Additionally, the experiments were limited to altitudes

up to 130 meters. It was observed that the use of 3x3

tiling becomes impractical for real-time operations

above this altitude due to the limitations in FPS on

the AI board. To address this issue, it is anticipated

that the use of more advanced onboard environments

or the application of other lightweight techniques such

as transformation or distillation could improve

real-time FPS and accuracy. Moreover, if the real-time

video can be transmitted to a server for processing,

this issue can be resolved. Further, it is expected that

conducting experiments in a more diverse range of

environments will more conclusively validate the

proposed method's effectiveness, with plans to

explore other lightweight techniques in future

research.
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